Physiological and pharmacological alterations in postsynaptic GABA(A) receptor function in a hippocampal culture model of chronic spontaneous seizures.

نویسندگان

  • J W Gibbs
  • S Sombati
  • R J DeLorenzo
  • D A Coulter
چکیده

Cultured rat hippocampal neurons previously exposed to a media containing no added Mg2+ for 3 h begin to spontaneously trigger recurrent epileptiform discharges following return to normal medium, and this altered population epileptiform activity persisted for the life of the neurons in culture (> 2 wk). Neurons in "epileptic" cultures appeared similar in somatic and dendritic morphology and cellular density to control, untreated cultures. In patch-clamp recordings from hippocampal pyramidal cells from "epileptic," low Mg2+ pretreated hippocampal cultures, a rapid (within 2 h of treatment), permanent (lasting > or = 8 days) and statistically significant 50-65% reduction in the current density of functional gamma-aminobutyric acid-A (GABA(A)) receptors was evident when the GABA responses of these cells were compared with control neurons. Functional GABA receptor current density was calculated by determining the maximal response of a cell to GABA 1 mM application and normalizing this response to cellular capacitance. Despite the marked GABA efficacy differences noted above, the potency of GABA in activating chloride currents was not significantly different when the responses to control and "epileptic" pyramidal cells to multiple concentrations of GABA were compared. The EC50 for GABA was 4.5 +/- 0.2 (mean +/- SE) for control neurons and 3.5 +/- 0.4 microM, 5.2 +/- 0.5 microM, 3.7 +/- 0.3 microM, and 4.6 +/- 0.3 microM for epileptic neurons 2 h, 2 days, 3 days, and 8 days after low Mg2+ pretreatment, respectively. Modulation of GABA responses by the benzodiazepine, clonazepam, was significantly reduced in epileptic neurons compared with controls. The kinetically determined clonazepam 100 nM GABA augmentation efficacy decreased from 44.1% in control neurons to 9.3% augmentation in neurons recorded from cultures 10 days posttreatment. The kinetics of GABA current block by the noncompetitive antagonist picrotoxin were determined in hippocampal cultured neurons, and an IC50 of 14 microM determined. Bath application of picrotoxin at half of the IC50 concentration (7 microM) induced epileptiform activity in control cultures and this activity appeared very similar to the epileptiform activity induced by prior low Mg2+ treatment. This concentration of picrotoxin was determined experimentally to block 30% of the GABA(A)-mediated receptor responses in these cultures, and this level of block was sufficient to trigger spontaneous epileptiform activity. The 50% reduction of GABA responses induced as a permanent consequence of low Mg2+ treatment therefore was determined to be sufficient in and of itself to induce the spontaneous epileptiform activity, which was also a consequence of this treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The GABAergic projection of the dentate gyrus to hippocampal area CA3 of the rat: pre- and postsynaptic actions after seizures.

The glutamatergic granule cells of the dentate gyrus transiently express GABAergic markers after seizures. Here we show that when this occurs, their activation produces (i) GABA(A) receptor-mediated synaptic field responses in CA3, with the physiological and pharmacological characteristics of mossy fibre transmission, and (ii) GABA(A) receptor-mediated collateral inhibition. Control hippocampal...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures.

Limbic status epilepticus and preparation of hippocampal slice cultures both produce cell loss and denervation. This commonality led us to hypothesize that morphological and physiological alterations in hippocampal slice cultures may be similar to those observed in human limbic epilepsy and animal models. To test this hypothesis, we performed electrophysiological and morphological analyses in l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 4  شماره 

صفحات  -

تاریخ انتشار 1997